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We elucidate the behavior of large regions of warm air (thermals) rising in the earth's atmosphere. It is 

found that inside a uniformly rising large spherical bubble rotational motion of the air arises around a central 

vortex line located in the equatorial plane of the bubble. We determine the total energy of the rise process of 

a thermal. 

The rise of large bubbles (thermals) is one of the most common forms of convective motion in the terrestrial  

a tmosphere [1-4 ]. Such a bubble contains warmer air compared to the surrounding a tmosphere ,  and therefore  an 

Archimedes force acts on it and causes its rise. This process is accompanied by compensating motion of neighboring 

layers of the atmosphere downward. It is clear that between the surface of the rising bubble and the descending 

layers of the surrounding atmosphere the forces of viscous friction appear  whose magnitude increases with increase 

in the velocity of the bubble rise. Therefore,  the friction forces turn out to be equal to the Archimedes forces a l ready 

in the initial stage of the process of bubble rise, and the motion of the bubble becomes uniform, so that the medium 

is considered to be ideal. 

We consider a three-dimensional  idealized model of a thermal. 

Since the air densi ty g inside the bubble is not much lower than the density of the a tmosphere  at the same 

height, we approximately assume the medium to be incompressible and the densities inside and outside the bubble 

to be equal. 

The  motion of the air bubble, whose shape is assumed to be spherical, will be interpreted as a local process 

[5-7 ]. We consider the bubble itself to be the core of a process in which the air of the bubble does not mix with 

the surrounding air. 

It is known [8 ] that when a solid sphere moves in a fluid, an excess pressure appears on its faces A and 

B, and, conversely, a deficit of pressure in its equatorial (middle) plane. This gives rise to forces that strive to 

deform the sphere, i.e., to compress it in the vertical direction and stretch it eq:,?.torially. However, this deformation 

does not occur because of the rigidity of the sphere. 

Th e  s i tua t ion is d i f fe ren t  when an air sphere  moves in the a tmosphere .  However ,  as is seen from 

exper iments ,  no deformat ion occurs in this case too. The  natural  question suggests itself: what  h inders  the 

deformation of a rising air bubble? We can obtain an answer to this question if we take into account the fact that 

the boundary spherical layer of the bubble air, due to its motion relative to the external  region of flow, experiences 

a friction force that generates a torque causing sliding of the boundary  spherical layer  in a direction opposite to 

the rise of the bubble. In exactly the same way, the friction forces between the boundary  spherical layer  and a 

deeper  spherical layer  generates similar sliding of this latter layer. This is the way in which deeper  and deeper  air  

layers inside the bubble are drawn into internal motion. As a result, all the air in the bubble starts to rotate: layers 

far from the polar axis AB move in the direction of the external  air flow past the bubble (i.e., downward) ,  and 

layers near the axis in the bubble move along the direction of bubble rise (i.e., upward) (Fig. 2). 

This internal rotational motion of the air in the bubble opposes the forces that strive to deform it. Thus ,  

the air of the bubble participates simultaneously in two motions: translational upward and rotational inside the 

sphere. 
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Fig. 1. Motion of a solid sphere  in a fluid. 

lzt 
\ 

Fig. 2. Streamlines for an air bubble moving in the a tmosphere:  a) vertical 

section through the axis; b) middle plane. 

To make the picture of the rotational motion in the bubble  clearer,  we divide its circular equatorial  cross 

section (whose radius is R) by a dashed circle into two parts with equal areas:  a disk M, whose radius is R/v~,  
at the axis and a plane ring N, whose width is R - r. The areas  of the both parts of the equatorial  circle are equal 

to ~R2/2. In the ring N the air  moves downward (in a coordinate sys tem associated with the rising bubble) ,  and  

in the disk M the lines of rotational motion are directed upward. 

The  circle L ( represented in Fig. 2b by the dashed line) lying in the middle plane and  dividing the regions 

M and N will be called the central  vortex line. The  air  in the thermal  rotates a round this line. The  remaining vortex 

lines are also circles with centers  on the polar axis; they are located in all the planes perpendicular  to the axis AB, 
including the horizontal  middle  plane. From the symmet ry  of the problem it is clear that on each circular vortex 

line rot v has the same value. 

Thus,  the air  rotat ing in the bubble forms a closed vortex tube whose cross section is in the form of a 

semicircle (Fig. 2) and that  curls around the polar axis without a gap and  occupies the entire volume of the bubble.  

It is only necessary to keep in mind that the surface layer  of the air in the bubble comes into contact  with 

a zone of external  flow that  moves without vortices. Therefore ,  it follows from the continuity condition that  a 

monotonic decrease in I rot vl should occur inside the bubble f rom the central  vortex line to its surface. 

We encounter  a s imilar  s i tuat ion in the axial  region, where  all the rota t ing s t reams  merge  into one 

recti l inear flow directed upward along the axis AB. This  means that in the axial  region, too, the angula r  velocity 

of air  rotation decreases with distance from the central vortex line to the axis. 

From what has been said it follows that inside the bubble the quanti ty I rot v4 is m a x i m u m  in the vicinity 

of the central  vortex line L and gradual ly decreases to zero with dis tance from the line to each side. 

Now, we consider this problem quantitatively. For this purpose,  we use well-known solutions for spatial 

flow around a sphere  [8, 9 ]. 

In a fixed absolute reference frame the air bubble moves upward along /he z axis with the velocity v0. In 

a f rame of reference moving with the bubble,  the surrounding air  moves with the velocity vr = -vo .  When a sphere  
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of radius R is immersed in a flow directed along the z axis with the velocity vf, the s t r eam function ~p and the 

velocity potential ~, far from the bubble are respectively equal to 18, 91 

~0 = 2 vfr I -- sin 2 0 ,  (i) 

T = vfr 1 2 r31 c o s O ,  (2) 
, . J  

where r is the radius vector of an a i r - s t ream point (r > R) drawn from the sphere center ,  O is the angle between 

the radius vector r and the z axis. 

As is known [8, 9 ], the values of the radial and tangential  velocity in the moving coordinate  sys tem are 

equal to (Fig. I) 

v 0 = - vf 1 + 2  s in  69 .  

From this it follows that on the sphere  surface (r --- R) the boundary  condition of impermeabi l i ty  is satisfied: 

(4) 

v R = 0 ,  ( 5 )  

and at infinity (r ~ oo) 

v r =  v f c o s O ,  v o =  - v f s i n O ,  

i.e., the velocity of the homogeneous flow at infinity is equal to vf and is directed along the z axis in the negative 

direction (downward).  The  velocity distribution on the sphere  surface is character ized by the equali ty 

3 
v o = ~ v r sin O .  (6) 

The  distribution of the pressure p over the sphere surface follows from the Bernoulli equat ion 

1 2 1 2 (7 )  
p + - ~ p v  0 = p ~  + -~pv f  . 

From Eq. (7) it follows that 

A p = p - p ~  = 1 - ~ - s m  O - ~ p v f ,  (8) 

The  latter equality shows that  the sphere  is subjected to a compressive force (Ap > 0) in the longitudinal  direction 

(® = 0) and a tensile force (Ap < 0) in the lateral direction (O = n / 2 ) .  These  compress ive- tensi le  forces de te rmine  

the structure of the air bubble. 

For fur ther  investigation of the rise of the thermal,  we use the notion of the scalar moment  of the force M, 

introduced in [6 ] and equal to the sum of the scalar products of the forces F i applied to the sys tem and the radius 

vectors r i of the points of their  application: 
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M = ~ (Fi"  ri) (9) 

In particular, for the case of two forces equal in magnitude but directed in opposite directions along a thin rod of 
length l, the scalar moment  is equal to 

M = F / l .  

According to Hooke ' s  law, the elongation of a rod under  the action of the force F is equal to 

AI k F ,  ( I0 )  
l 

where k is the elastic modulus of the rod material .  From relation (10) it follows that  

At = k M .  (10 ' )  

As applied to cont inuum mechanics,  the moment  M is de te rmined  by the equality 

M = f ( f . r )  d V ,  (11) 
v 

where f is the volumetric densi ty of the force, or by the analogous equality 

M = f ( f . r )  d S ,  (11 ' )  
s 

where f is the densi ty  of the force distr ibuted over the surface S. 

In an orthogonal  coordinate sys tem the quantity M can be represented as the sum of the components  a long 

the axes: 

M = M x + My + M z , 

where M x, My,  and Mz mean the corresponding integrals,  for example ,  

M z =  f f ~ z d V .  
V 

We can show that for the pressure force this quanti ty is equal to 

M z = - f pz cos O d S .  (12) 
S 

Here O is the angle between the normal to the area and the z axis. 

Having applied the lat ter  formula to the air  bubble,  we come to the conclusion that  the longitudinal  

component  of the scalar moment  of the addit ional pressure force on the sphere is equal to 

M z =  - f A p z c o s O d S .  (13) 
s 

Taking into account that S is the spherical surface of the bubble,  that the surface element  dS and the 

quantity z are respectively equal to 

dS = R 2 sin O dO d79 , z = R c o s O ,  

and that the excess pressure Ap is determined by equality (8), the expanded version of formula (13) will take the 

form 
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Fig. 3. Diagram of the vectors. 

M z = - 

2 ~  

f Y 
~o=0 O---0 

A p c o s O R c o s O R  2 s i n O d O d T  = 

= 27tR 3 - ~ p v  r - ~ sin O cos 2 0  sin O d O .  (13')  
0 

The integral on the r ight-hand side is easily calculated, yielding for the longitudinal component  of the scalar 

moment the quantity 

M z  = _ 0 .1Eb,  (14) 

where Eb is the kinetic energy of the rising bubble as a whole, equal to 

4 3 1 2 (15)  
E b = - ~ n R  - ~ p v f .  

Now, we calculate the transverse component of the scalar moment: 

M h = M x + My = f A p ( r - d S ) .  
S 

(16) 

Here r = ~ = R sin O is the horizontal radius vector of the area d S  (whose normal is n, Fig. 3). Since the 

angle between r a n d  n is equal to n / 2  - O, the scalar product  ( r .dS)  turns  out to be equal to r d S  sin O. 

Incorporating the Quantities r = R tin O, d S  = R 2 sin OdOd~p, we come to the relation 

( r -aS)  = sin O R sin O R 2 sin O dO d~p. 

As a result, formula (16) takes the expanded form 

22~ 7£ 

m h = R  3 f f Aps in  3 O d O d ~ o .  (17) 
~p=0 O=0 

Integrating over the angle ~p and substituting the quanti ty Ap according to equality (8), we obtain a formula 

that determines the transverse component of the moment Mh: 

1 2 (  9 2 )  (18) M h = 2 ~ R  3 - ~ p v f  ~ 1 - - ~ s i n  ® sin 3 0 d O .  
0 

Having calculated the integral on the r ight-hand side, we finally obtain 

M h = t . 6 E  b . (19) 
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From Eqs. (14) and  (19) it follows that the core undergoes strong tension in the lateral direction and some 

compression in the longitudinal direction. The  total scalar moment  is equal to !.5 of the motion energy  of the core 

as a single whole: 

M = l . S E  b.  (20) 

The  value of the moment  M is obtained for the pressure from the side of the flow around  the bubble.  It is 

clear  that the pressure  from the side of the core on the external-f low region differs only in direction. There fo re  the 

scalar  moment  of the pressure  force acting on the external-f low region from the side of the core M',  just like its 

components  M~, M'  h, differs only in sign from the value of the moment  calculated above: 

M = - M ,  M = - M z ,  M = -  M h. 

Now, we take into account that according to the general laws of hydrodynamics  18, 9 ], the energy  of the 

fluid in the region of flow past the bubble Ep is equal to half the energy of the sphere  when its dens i ty  is equal to 

the fluid densi ty ,  and the entra ined mass is equal to half the mass of the sphere: 

Ep = 0 .SE  b . (21) 

Now, we go over to determining the velocities and kinetic energies of the air  particles part icipat ing in the 

vertical motion of the rising bubble and in the motion around the central  vortex line L (Fig. 2). The  points OO'  on 

the vertical section of the vortex tube show the wake of the central  vortex line. 

In the moving coordinate  sys tem (fixed in the rising bubble) the air  velocity at the per iphery  of the middle  

section (O -- n / 2 )  is directed downward and  according to formula (6) is equal to vh -- - -3 /2v0,  where v 0 is the 

velocity of the bubble rise. 

The  air  velocity near  the bubble center  Vc is numerically equal to vh, but it is directed upward,  and  therefore  

Vc = 3/2vo. 

It is clear  that in the absolute f rame of reference (fixed in the outer  a tmosphere)  the indicated velocities 

are  respectively equal to Yah = -- 1/2vO, Vac = 5/2v0- 

Now, we calculate the total kinetic energy of the air  moving in the volume of the bubble V in the moving 

f rame of reference coupled directly to this bubble: 

1 f p v 2 d V .  (22) 
E t = 2  v 

where p is the air  density.  Since the air inside the bubble moves along closed s t ream surfaces (vertical sections of 

these surfaces are  depicted in Fig. 2) and here the velocity components  change in a complex manne r  in going f rom 

one s t ream surface to a neighboring one, we now proceeed as follows. 

We de termine  the relat ionship between the vertical and  horizontal components  of the t ranslat ional  velocities 

and  the kinetic energies at the peripheral  s t ream surface and at the s t ream surface adjacent  to the axial  line OO' .  

The  s t reamlines  of the air  moving inside the bubble are located in planes passing through the coordinate  

axis z. Near  the central  vortex line OO* of the vortex tube the s t reamlines form circles, and  therefore  the vertical 

a n d  hor izon ta l  c o m p o n e n t s  of the  kinet ic  ene rgy  for any  such s t r eaml ine  a r e  equal  to one  a n o t h e r ,  and ,  

consequently,  in the central  region of the vortex tube 

E~ = E h . (23) 

The  case is more complex for the portions of the peripheral  s t reamlines  lying on the surface of the rising 

bubble,  where, according to Eq. (6), the vertical and horizontal projections of lhe velocity are de te rmined  by the 

equalities 
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3 2 3 (24) 
v z =  ~ v f s i n  (9 ;  via = - ~ vf s in (g cos (9 . 

The integral kinetic energy of the air  particles moving inside the vortex tube over the spherical  surface of 

the bubble is determined by the formula 

= ½p 5 f v 2 as .  (25) 
s 

Taking into account that the area element  dS in a spherical coordinate sys tem is equal to dS = R2sin 

®dOdg,, we transform equality (25) to 

I 2 v 2 v 2 (26)  E = -~ pv[ f f s i n O d O d  7 , = z p R  2 s i n O d O .  
o=0 ~/,=0 0 

Substituting the velocity components  (24) into the final expression for E, we obtain formulas  for Ez and 

Eh: 

Ez 

2 
9 2 2 9 16 2pvf 

= -~ :rtpR vf ~f s i n S O d o = ~ - i - ~ R  ~ , 
0 

2 
9 2 2 9 4 2pvf 

E h = ~ : ~ p R  vf ~ sin 3 O c o s  2 O d O  = ~ - ~ R  2 
0 

(27) 

Thus ,  the ratio of the vertical component  of the energy E to the horizontal component  turns out to be equal to 

G (28) K = - - = 4 ,  
Eh 

whereas,  according to (23), in the axial  region this ratio is 

K = i .  (29) 

Compar ing  relalions (28) and  (29), we can approximate ly  consider  that  these are  the ex t reme  values and  

that on the average over the cross section of the vortex tube 

K = 2 + 3 .  (30) 

As shown in [5, 6 1, in the absence of a source-sink,  the force equilibrium of the ae rodynamic  region 

involved in a process that  is symmetr ic  about a certain axis (for example ,  z) is de te rmined  by the relat ions 

M'~ + p~ + 2G = o ,  (31) 

M" h + 2P d+  2E h = 0 .  (32)  

Here Pd = f (P -- Po)dV is the integral difference pressure,  M' z and Mh are components  of the scalar  mo men t  of 
v 

the pressure force acting on the outer  surface from within the sphere.  We recall thai according to (1 I ' )  M~_ = 

- Mz, M h = _ M h. 

In order  to eliminate the unknown quantity I" d, we multiply (31) by 2 and subtract  (32). As a result ,  we 

obtain 4Ez - 2Eh = 2M' z - Mh. According to equalities (14) and (19), 2Mz - M h  = - - 1 . 8 E  b. Consequent ly ,  
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4Ez _ 2E h = 1.8Eb. (33) 

In particular, assuming K = 2, we find for the total energy of the motion of the air inside the bubble Et = 

Ez + Eh = 0.9Eb. We similarly obtain Et = Ez + En = 0.72Eb for the case K = 3. As a result, wc conclude that the 

energy inside the bubble Et lies within the limits (0 .7-0 .9)Eb.  

Summing this value of Et with the energy of the spherical bubble as a whole Eb and the air energy in the 

region of flow past the bubble E o (21), we arrive at the final expression for the integral energy of the air-bubble 

rise process: 

-__E = E b + E t + E p =  (2.2 + 2.4) E b. (34) 

Thus, it turns out that the total energy of the bubble rise process is 2 . 2 - 2 . 4  times higher than E b. The 

entrained mass is equal to 1 .2 -1 .4  of the proper mass of the bubble. 

It should be noted that in [101 the so-called Hill spherical vortex is considered, whose stream function 

inside a sphere of radius R is equal to 

3vt ( R  2 --  r 2) r 2 sin 2 0 .  
4 R  2 

(35) 

The corresponding calculation for this vortex leads to the result 4E z - 2 E  n -- 1.3E b, which contradicts to 

the value (33) obtained above. Consequently,  the Hill vortex cannot be in force equilibrium in the process of the 

rise of a thermal, and therefore the opposite assertion made in [9 ] is erroneous. 

In conclusion we emphasize that, as follows from the above, the entrained mass is equal to 1 . 2 -1 .4  of the 

proper mass of the bubble. The large magnitude of the entrained mass reduces the value of the air-bubble velocity 

noticeably. Neglect of this explains the fact that the velocities calculated earlier ( 3 0 - 5 0  m/see)  for the rise of 

thermals were never measured in practice. 

N O T A T I O N  

p, air density; R, bubble radius; V -- 4 /3nR 3, bubble volume; r, radius of the axial line located in the 

middle plane; vo, velocity of the air-bubble rise; vr -- -v0 ,  velocity of the homogeneous air flow in a moving 

coordinate system coupled to the bubble; v a, air velocity in an absolute coordinate system fixed in the a tmosphere  

as a whole; v, air velocity in a moving coordinate system coupled to the rising bubble; Vr, vo,  radial and tangential 

components of the velocity v in a spherical moving coordinate system; rot v, velocity curl; ~,, stream function for 

the velocity v; ~o, potential of the velocity v; p, air pressure at an arbi t rary  point; P~o, air pressure at infinity; Ap 

= p -poo, difference pressure at an arbitrary point; Pd = f ApdV,  integral difference pressure; f, volumetric densi ty 
V 

of the force; f = - g r a d  p, volumetric density of the pressure force; M = J" (f-r)dV, scalar moment of the force f 
V 

distributed over the volume V; M = Mx + My + Ms; Mx = f / x x d V ,  My = f [yydV, Mz = f f zzdV,  components of the 
v V V 

scalar moment of the volumetric force f; M = J" (f-r)dS, scalar moment of the force f distributed over the surfaces; 
S 

M = M x + My + Mz; Mx = f [xxdS,  My = f [yyd5, Mz = .f fzzdS,  components of the scalar moment of the surface 
S S 5 

force f; Mz, Mh = Mx + My, longitudinal (vertical) and transverse components of the scalar moment of the pressure 

force acting on the sphere from the side of the flow region; M" = - M z ,  M'h = --Mh, longitudinal and transverse 

components of the scalar moment of the pressure force acting on the flow region from the side of the sphere; E b = 

I /2pv2V,  kinetic energy of the bubble as a whole; E~ = l / 2 f p v 2 d V ,  kinetic energy of the air in the bubble volume 
V 
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V in a moving system; Et = Ez + Eh; Ez = l /2fpv2zdV,  kinetic energy of the vertical wind in a moving system; Eh 
V 

= 1/2fpv2xdV + l/2fpv~dV, kinetic energy of the horizontal wind in a moving system; K = Ez/Eh ,  ratio of the 
V V 

vertical and horizontal components of the wind energy inside the bubble determined in a moving system; Ep = 

Eo/2 ,  kinetic energy in the region of flow past the bubble; E -- E b + E t + Ep, total energy of the process of bubble 

rise. 
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